Startseite » E-Procurement »

Lieferverzögerungen vorhersagen? AI macht es möglich

Transforming Spend Management into Value Creation
Lieferverzögerungen vorhersagen? AI macht es möglich

Trading_with_Forex_Broker_on_Chart_Data
Mit dem Predictive Order Management ist es möglich von einer reaktiven auf eine proaktive Vorgehensweise umzusteigen. Bild: kentoh/Fotolia

Jaggaer, das weltweite Source-to-Pay Unternehmen, hat, laut Pressemeldung, den ersten Prototypen eines, auf künstlicher Intelligenz basierenden Algorithmus, zur Vorhersage der Lieferpünktlichkeit von Waren und Materialien im direkten Einkauf entwickelt. Jaggaers Predictive Order Management erkennt Lieferverzögerungen rechtzeitig und meldet diese unverzüglich. So können Supply Chain Manager in Zukunft das Risiko von Störungen oder Ausfällen in der Produktion minimieren und Kosten reduzieren, die in einem solchen Falle entstehen würden. Diese neue Errungenschaft wurde erstmals im Rahmen der 10. BME eLösungstage am 12. und 13. März 2019 in Düsseldorf vorgestellt.

Eine Kooperation zwischen Zeiss, dem international führenden Technologieunternehmen in den Bereichen Optik und Optoelektronik und Jaggaer, machte diese bahnbrechende Entwicklung erst möglich.

„Durch den Einsatz des entwickelten Algorithmus, kann eine Vorhersage bezüglich der Liefertreue getroffen werden. In unseren Tests konnte eine Genauigkeit von über 95 Prozent erzielt werden“, sagte Michael Rösch, SVP Operations DACH bei Jaggaer. „Diese Entwicklung birgt enormes Potenzial für die produzierende Industrie, insbesondere für Unternehmen, die auf Just-in-time Lieferungen von Komponenten und Materialien angewiesen sind. Durch die Nutzung des Predictive Order Management können Unternehmen erkennen, bei welchen Bestellungen das Risiko einer verspäteten Lieferung besteht. Disponenten können somit rechtzeitig Maßnahmen zur Risikominimierung einleiten, indem sie beispielsweise eine Bestellung auf zwei oder mehr Lieferanten aufteilen.“

Das Predictive Order Management wurde „trainiert“, indem Millionen von historischen Lieferdaten in den Algorithmus eingespielt wurden. Es werden 50 Datendimensionen genutzt, um Ereignisse vorherzusagen. „Bisher mussten sich Fachleute im Bereich Supply Chain Management auf historische Daten und subjektive Einschätzungen verlassen, um das Risiko einer verspäteten Lieferung zu erahnen. Mit dem Predictive Order Management ist es nun möglich von einer reaktiven auf eine proaktive Vorgehensweise umzusteigen“, sagte Michael Rösch.

„Um genaue Vorhersagen treffen zu können, stützt sich der Algorithmus auf große Datenmengen. Daher ist die Anwendung speziell auf den direkten Einkauf mit seinem oft hohen Transaktionsvolumen ausgerichtet.“, fügt Michael Rösch hinzu. „Durch die Machine-Learning-Algorithmen des Predictive Order Managements werden die Vorhersagen im Laufe der Nutzung noch genauer.“



Hier finden Sie mehr über:
Aktuelles Heft
Titelbild Beschaffung aktuell 10
Ausgabe
10.2021
PRINT
ABO

Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de